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Abstract

I design a framework and a laboratory experiment that allow for the comparison of

multiple theories of misspecified learning. In this framework agents learn from a single

signal that is informative about their type as well as a state. I study three forces that

can cause misspecified beliefs to persist in the long run: incorrect initial beliefs, learning

traps, and biased updating. I find that biased updating is the main driver of misspecified

beliefs. In addition, I vary the degree of ego-relevance of the parameters by introducing

a treatment where subjects learn about someone else’s performance instead of their

own. The data is consistent with biased updating in both cases, but for potentially

different reasons: when learning about themselves, subjects attribute successes to their

own ability and failures to luck. Instead, when learning about others, they compensate

for initial negative biases by over-attributing positive signals to the ability of others.

This translates into similar observed choices, but different dynamics in beliefs. My

results help rationalize the prevalence of overconfidence as well as stereotypes.
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1 Introduction

A growing body of literature in economics explores how people develop incorrect beliefs about

fundamentals. Most of this research centers on scenarios where agents passively observe the

world, and incorrectly integrate the received information into their beliefs.1 However, in

many real-world situations agents are active participants in the generation of information.

In these cases, the information they observe is influenced by their actions and subsequent

behavior is in turn determined by how they incorporate the information into their beliefs.

As an example, consider a student who needs to decide how much effort to put into

studying for an exam. Their decision will depend on two factors: their belief about their

intrinsic ability and their belief about how difficult the exam will be. The outcome they

observe will be affected by how much they decide to study. Imagine that the student exerts

a moderate amount of effort and gets a surprisingly good grade. Did they get a good grade

because they are smarter than they thought? Or because the exam was easier than they had

anticipated? Their future exam-preparation strategy will depend fundamentally on which

line of reasoning they take. This feedback loop is referred to as an endogenous information

process and is at the center of the forces I study.

To understand what main forces are at play, I compare a set of theories that model

learning in settings with endogenous information and can rationalize the persistence of mis-

specified beliefs. I develop a unifying framework that nests multiple theories of learning and

generates testable predictions for each of them. Then, I cast this framework in a laboratory

experiment and test the predictions to identify which of the theories are consistent with the

behavior observed in the lab. The experiment features an agent who needs to learn two

parameters: one that pertains to their own characteristics (an ego-relevant parameter), and

an exogenously determined state. In the context of the student preparing for exams, the two

parameters would be their intrinsic ability and the difficulty of the exam.

Misspecified beliefs about an ego-relevant parameter are often referred to as over-

1See Benjamin [2019] for a review of the literature on errors of probabilistic thinking.
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confidence (or underconfidence) and have been documented by behavioral scientists and

economists in a variety of settings.2 Oster et al. [2013] find subjects who are at high risk of

having Huntington’s disease overestimate their probability of being healthy, and they make

retirement decisions as if they were healthy. Hoffman and Burks [2020] show workers over-

estimate the quality of their match to their current employment and are unlikely to look for

other opportunities. Camerer and Lovallo [1999] find entrepreneurs are overconfident about

the quality of their enterprise, which leads to excessive entry and early exit from markets.

In all of these examples, holding an incorrect belief about a fundamental leads to sub-

optimal choices with potentially high costs, and actions affect what can be learned. In spite

of the abundance of evidence, the scope of the existing research comes from settings that do

not allow for important features of such situations. In particular, most of the experimental

evidence documenting the bias is collected in settings where subjects are passive learners.3

They observe a noisy signal and report their beliefs over subsequent rounds.4 Although these

studies provide important insights, they are not flexible enough to incorporate the richer

theories that have been proposed more recently. In particular, they do not allow the study

of endogenous learning or for simultaneously learning about multiple parameters.5

In my experiment, I move away from the standard framework of passive learning to

analyze a richer set of learning mechanisms. In particular, the interaction between the

two parameters together with an endogenous information process gives rise to three forces

that allow for the persistence of incorrect beliefs: the presence of learning traps, incorrect

initial beliefs, and misattribution bias. The theories that I consider incorporate different

combinations of these mechanisms.

When the setting features learning traps, even an agent who incorporates all information

2Kelley and Michela [1980] provides a review of the psychology literature, while Benjamin [2019] and
Moore and Healy [2008] review the literature in economics.

3Götte and Kozakiewicz [2022] and Ozyilmaz [2022] are exceptions that study settings with endogenous
information processes. They each focus on only one failure of learning, while here I try to compare across
multiple mechanisms

4Bracha and Brown [2012] and Möbius et al. [2022] are some examples.
5Coutts et al. [2020] studies an environment with an ego-relevant parameter and an exogenous state but

does not incorporate the endogenous information process.
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correctly may fall into learning traps, as outlined by Hestermann and Yaouanq [2021]. These

traps are characterized by a combination of an incorrect belief and an optimal action that

produce information that confirms the incorrect belief. Once an agent falls into a trap, the

belief will be stable and even with a correctly specified model of learning, they will not be

able to abandon their misspecified beliefs. If the agent is dogmatic about their initial belief,

Heidhues et al. [2018] show they will inevitably fall into a trap and thus will be able to

rationalize and sustain their initial misspecification belief.6

Ba [2023] moves away from dogmatism and endows the agents with a mechanism through

which they can abandon incorrect beliefs. This allows them to avoid falling into learning

traps. To do so, agents perform Bayesian hypothesis tests that evaluate which of two possible

parameters is more likely. By doing so, she characterizes the set of situations in which even

agents who consider alternative paradigms may become trapped.7 A more general model in

this spirit is also illustrated by Ortoleva [2012], where the agent has a prior over priors and

acts according to the most likely belief.

Lastly, misattribution bias is the more classical explanation and has been widely studied

in behavioral science.8 According to that theory, agents who suffer from misattribution bias

will attribute successes to their own ability—the ego-relevant parameter—and their failures

to bad luck—the state. Under this model of learning, even an agent who initially has a correct

initial belief may become overconfident if they observe a sequence of successes. In this case,

the main driver of the bias is not an initial misspecification or the presence of learning traps;

it is the updating procedure itself.9

These theories provide the main building blocks for a simplified framework that can be

directly implemented in a laboratory experiment. In the experiment subjects make choices

and receive feedback that depends on their own ability, an exogenous parameter and the

6Götte and Kozakiewicz [2022] study the case of agents with dogmatic initial beliefs in a laboratory
experiment.

7A similar mechanism is proposed by Schwartzstein and Sunderam [2021] in a setting with persuasion.
8See Kelley and Michela [1980] for a review.
9A more general framework that can be used to model this bias has also been proposed by Brunnermeier

and Parker [2005] and empirically studied by Bracha and Brown [2012].
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choice they made. I track their choices as well as their beliefs about their own ability. The

goal is to identify which of the three forces—the presence of learning traps, misspecified

initial beliefs, or misatribution bias—better explains the observed behavior. To determine

the fit of the models, I compare the behavior predicted by each theory with the benchmark

given by the fully-Bayesian updating procedure.

I also study whether the learning mechanism is inherently linked to the ego-relevance of

the parameters or if it is a more general phenomenon. I vary the degree of ego-relevance by

introducing a treatment in which subjects learn about the ability of another participant. In

this treatment, the participants know only the gender and nationality of the other, and thus

can induce stereotypes—a different type of misspecification. If correct learning about the

parameters happens at higher rates in the stereotype treatment, this finding would suggest

the bias is intrinsically linked to the ego-relevance of the parameter. By contrast, if similar

biased behavior arises in both treatments, the main driver of these types of misspecified beliefs

is more likely to be the updating procedure itself or the endogenous information process.

Although some agents do fall into learning traps, I find the behavior of most subjects

is better explained by misattribution bias: good news are treated as signaling high ability,

whereas bad news are attributed to a low state. I also find misattribution is no more prevalent

in the ego-relevant condition than in the stereotype one. This finding suggests the main

driver of the misspecification is the updating procedure; however, the underlying mechanism

by which the bias is generated may be different in both treatments. Whereas subjects in the

ego-relevant condition prefer to hold themselves in high esteem, in the stereotype condition,

updating seems to be driven by some sort of bias overcorrection—when subjects realize they

underestimated the ability of another participant based on their gender and nationality, they

compensate by overestimating their ability after receiving feedback.

Finally, I estimate the structural parameters of the models to study model-heterogeneity

in the sample. I find that even at an individual level, the behavior is better explained by an

average model of misattribution bias for most subjects. A smaller group of subjects exists
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that can be better explained through dogmatic beliefs and hypothesis testing, and very few

of them behave in line with the fully Bayesian benchmark.

In what follows, I first discuss the theoretical framework and the predictions of each

of the theories. Then, I introduce a unifying example and my hypotheses. In section 4, I

describe the experimental design, and in section 5, I present the data and the results. Section

6 outlines the estimation of the parameters and the model fit analysis.

2 Theoretical Framework

The theories I consider make predictions in two distinct frameworks. I first detail each

theory within their original framework and then develop a unifying example that allows me

to compare the predictions of all of them. In framework 1, I consider a setting in which an

agent observes a continuous output and infers the underlying parameters. In framework 2,

the agent observes a binary outcome and infers the underlying probability of success, which

is related to the parameters.

Although agents observe information and update their beliefs in both frameworks, the

type of information available is very different in each of them. This means that the updating

procedures are also different across frameworks. As a result, comparing the predictions of

theories within a framework is easy, but comparing across frameworks is not straightforward.

I will first describe each theory within it’s original framework and compare it to others in

the same framework. In the following section I illustrate how it is possible to compare across

frameworks within the unifying example.

2.1 Framework 1

An agent of type θ ∈ Θ faces an unknown exogenous state ω drawn from density f over Ω.

The agent knows the distribution of ω but not its realized value. His belief about the state

ω ∈ Ω is p0(ω) and coincides with the true distribution, f . His belief about the type θ ∈ Θ
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is p0(θ). Let the agent’s true type be θ∗, and the realized state be ω∗.

An agent’s belief about the type is misspecified if it assigns probability zero to their

true type. Furthermore, the agent is dogmatic if he holds a degenerate belief that places

probability one on being of type θ̂. An agent can be dogmatic and misspecified, in which

case θ̂ ̸= θ∗ and p0(θ̂) = 1.

The agent chooses an action a ∈ A and observes a noisy outcome h. The outcome is a

function of the agent’s type, the state, and the action. In particular, h = h(θ∗, ω∗, a)+ε with

h(·) increasing in both θ∗ and ω∗, and such that conditional on a pair of parameters (θ, ω),

there is a unique optimal action. Additionally, ε ∼ N(0, σ) is noise in the outcome.

After observing the outcome, the agent updates his beliefs about θ and ω using some

algorithm and moves on to the next period. He repeats this process infinitely many times.

I make the simplifying assumption that the agent is myopic and chooses the action that

maximizes the payoff in each period.10 This assumption simplifies the analysis and plays

a role in whether an agent who updates his beliefs using Bayes rule would learn the truth

or not, however, for the main theory discussed in this section, the results hold even when

relaxing this assumption as shown in Heidhues et al. [2018].

A key notion in this setting is that of a self-defeating equilibrium.11 A self-defeating

equilibrium is a belief and action pair, (p, a∗), such that the agent’s belief about his type

is misspecified, and the outcome generated by the action is consistent with the misspecified

belief. The agent’s belief is said to be stable when this happens.

Given the choice that sustains the self-defeating equilibrium, they observe the average

output given by

h̄(a∗) = 1
T

∑
t

[
h(θ̂, ω̂, a∗) + εt

]

where θ̂ and ω̂ is the type-state pair on which the misspecified belief places all probability.

That is, the agents belief is p(θ̂, ω̂) = 1 and p(θ, ω) = 0 for all other values of the parameter.

10This assumption is standard in the learning literature
11This notion is an adaptation of the Berk-Nash equilibrium in Esponda and Pouzo [2016] to this setting

with only one agent
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Within this framework, I consider two nested theories of belief updating: the first one

is a dogmatic modeler adapted from Heidhues et al. [2018]. The second one is a switcher, as

in Ba [2023]. The dogmatic modeler can be seen as a switcher with an infinitely sticky initial

belief so the two theories are nested. However, outside of the limiting case, they produce

different predictions about the agent’s behavior. I discuss each of them separately in what

follows.

2.1.1 The Dogmatic Modeler

Take the action space to be the same as the state space Ω and let Ω = A := [a, ∞).

A dogmatic agent is characterized by having a learning model where he does not update

his beliefs about θ and instead, holds a degenerate belief that places all probability on θ̂, which

is potentially misspecified. In this case, no matter how much evidence he gathers against

being of type θ̂, he will not update the beliefs about his type. Any discrepancies between

the observed outcomes and his believed type are incorporated using the Bayes rule to update

his beliefs about ω. Heidhues et al. [2018] show that, under certain assumptions on the per-

period utility, a dogmatic modeler will inevitably fall into a self-defeating equilibrium.12 The

equilibrium will be such that the outcomes he observes reinforce his belief on ω in such a way

that as t → ∞ the agent will be sure that the state is some ω
′ consistent with their believed

type and the observed data. In other words, he will be in a self-defeating equilibrium with a

stable belief that places probability one on the incorrect parameters (θ̂, ω∞)

The mechanism by which the dogmatic agent falls into the self-defeating equilibrium is

the following: suppose the agent holds the dogmatic and misspecified belief that they are

type θ̂ > θ∗. For any prior over ω, the agent will be disappointed by the outcome. That is:

1
T

∑
t

[h(θ∗, ω∗, a∗
t ) + εt] < E≾

[
h(θ̂, ω, a∗

t )
]

12The assumptions are that u is twice continuously differentiable with: (i)uaa < 0 and ua(a, θ, ω) > 0 >
ua(ā, θ, ω), (ii) uθ, uω > 0 and (iii) uaθ < 0 and uaω > 0. Where a is the minimal action and ā is the maximal
one. The direction of the derivatives is a normalization and the results would hold even when the signs are
reversed.
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where the right-hand-side of the inequality represents the average outcome that the agent

expected given his beliefs about their type and the state. The left hand side is what they

observed.

There are two possible sources for the disappointment: the first is that the realized state

ω∗ is lower than what the agent expected, E[ω]; the second source is that the agent is of type

θ∗ and therefore, for all possible states, his gain will be lower than what he expected when

the variance of the error term is low or T is large. That is, when 1
T

∑
t εt is close to zero.

Because the agent is dogmatic, he will not update his beliefs about θ and, as a conse-

quence, will attribute the disappointment to the state being lower than expected. He will

continue to update in this way until he converges to a belief about ω that is stable. Such a

belief will explain the observed utility perfectly and allow the agent to rationalize his dog-

matic belief about θ. Under the assumptions of Heidhues et al. [2018], there is a unique

value of ω at which the belief is stable, I will refer to such value as ω∞. This mechanism is

illustrated in Example 1.

Example 1: Set A = Ω = [a, ∞) and consider a student (she) with intrinsic ability

θ∗ ≥ 0 who faces a grading procedure ω∗ that is unknown to her. The student knows that a

higher ω∗ is more likely to yield a higher grade. In particular, she knows the grade is given

by (θ∗ + a)ω∗.

The student must choose an effort level a, which determines her grade. For whatever

the chosen effort level, the student must pay a cost c(a) = 1
2a2. She repeats this process for

infinitely many periods. Assume also that the student’s prior is such that E[ω] = ω∗ and she

is dogmatic about being of type θ̂ > θ∗.13 Therefore, the student’s payoff in period t is given

by

ut(at; θ∗, ω∗) = (θ∗ + at)ω∗ − 1
2a2 + εt (1)

13The example is illustrated for an overconfident student but the results are symmetric for a dogmatic
student who initially places probability one on some θ̃ < θ∗.
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Under this specification, the myopic optimal effort level is a∗
t = ω∗. Because the student

does not know ω∗, she will choose at = Et(ω) where the expectation is taken with respect to

the student’s belief at the beginning of period t. If she does not revise his effort choice for k

periods, she will receive an average utility of (θ∗ + a∗
t )ω∗ − 1

2a∗2
t but was expecting an average

utility of (θ̂+a∗
t )ω∗ − 1

2a∗2
t . In response, she will apply Bayes rule to update his beliefs about ω

to get the posterior belief with Et+k[ω] = (θ∗+ω∗)ω∗

θ̂+ω∗ which is lower than the initial belief. This

will cause the student to choose a lower effort at t + k. As a result, she will again receive an

average utility that is lower than what he expected which will cause her belief to drift further

down. This process will continue until the average utility equals her expected utility under the

dogmatic belief that assigns probability 1 to θ̂. At that point, the student will have reached a

self-defeating equilibrium and she will continue to choose sub-optimal effort forever.

Although the model of a dogmatic modeler rationalizes the prevalence of overconfi-

dent (underconfident) beliefs, the assumption that the agent has a degenerate belief and

no mechanism through which he can update such belief is very restrictive. An alternative

approach is proposed by Ba [2023]. She proposes an extension of the dogmatic agent who is

able to swithch from one dogmatic belief to another. By doing so, the agent can avoid the

self-defeating equilibria and end up being dogmatic and correctly specified.

2.1.2 The Switcher

An agent is a switcher if they behave as a dogmatic, but are willing to entertain the possibility

that they may be of a different type. In particular, when they start off as a misspecified

dogmatic, they are willing to switch to a different dogmatic belief if the data is convincing

enough. Their prior is still degenerate and assigns probability one to a particular type, and

zero to all other types. This means that a Bayesian update on θ does not change their beliefs

about the type. However, they are willing to entertain two such beliefs and have a mechanism

by which they decide which belief to adopt at any period t.

In order to abandon their initial dogmatic belief, the agent needs to observe a sequence
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of outcomes that are sufficiently unlikely to have happened if they were of the type they

initially believed. In order to evaluate if the evidence is convincing enough, they keep track

of the likelihood that each of the possible types generated the data. If the likelihood ratio is

sufficiently large, the agent will switch to the alternative and behave as if they are dogmatic

about the new type.

In particular, for an agent that starts with a dogmatic belief that they are of type θ̂

but is willing to consider the alternative explanation that they are of type θ̃, the agent will

switch to the alternative if

p[ht|θ̃]
p[ht|θ̂]

> α ≥ 1

where ht is the history of outcomes up to time t and α is the switching threshold.14 By

keeping track of the likelihood ratio, the agent can perform a Bayesian hypothesis test and

adopt the Dogmatic belief that best fits the data.15

By allowing the agent to keep track of the likelihoods and switching to an alternative

type, the switcher can avoid the self-confirming equilibria. However, if the prior belief on

ω is sufficiently tight around a self-defeating equilibrium, the switcher might look identical

to the dogmatic even in a case where α is not too large. This happens because under the

agent’s prior, the likelihood ratio is unlikely to grow as fast as it is needed to escape the

self-defeating equilibrium. In such situations, we say that the misspecified belief about θ is

persistent.

A more general model that can be considered here is that of Ortoleva [2012]. In his model

agents have a prior over priors and choose a single prior to act according to. If this prior

over priors only considers degenerate beliefs, the model will essentially reduce to the setting

described here. The main difference is that in order to determine if there is a paradigm shift,

14Notice that if α → ∞, the behavior of the switcher will be indistinguishable from that of the Dogmatic
modeler. In this sense, the switcher is a generalization of the dogmatic type.

15In a related problem Schwartzstein and Sunderam [2021] proposes a similar updating procedure which
relies on the Bayesian hypothesis test. However, in their model there is a sender who optimally chooses to
propose a model that fits the data
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the agent does not compare the likelihoods of two models, he simply looks at the likelihood

of the current model and decides to switch paradigms if the likelihood is below a certain

threshold. In this model the agent thus considers all possible theories and has a more flexible

rule for that allows for paradigm shifts.

2.2 Framework 2

As in framework 1, the agent is of some type θ∗ ∈ Θ and the state is ω is distributed according

to F (Ω). In this case, the agent chooses an action a ∈ A and observes a binary outcome

that is either a success or a failure. Denote the outcome by o ∈ {s, f}. The probability

of observing a success is increasing in θ and in ω. Whenever the agent observes a success,

he gets a payoff v > 0 and whenever the outcome is a failure, the payoff is 0. In addition,

the probability of success is such that for each state, there is a unique optimal action that

maximizes the agent’s expected payoff. Therefore, the probability of success can be seen as

an order-preserving transformation of the utility from Framework 1.

I focus on two nested theories that have been widely studied within this framework: full

Bayesian updating and self-serving attribution bias. I explain each of these classical models

of belief updating in what follows.

2.2.1 The Bayesian

A Bayesian agent simultaneously updates their beliefs about θ and ω by using Bayes’ rule.

The posterior at period t + 1 about θ after observing outcome o is given by:

pt+1(θ, ω|ht) = p[o|θ, ω]pt(θ, ω)∑
(θ′,ω′) p[o|θ′, ω′]pt(θ′, ω′)

where pt is the belief at the start of period t + 1 and includes all the information gathered so

far.

Bayesian agents choose the effort level that maximizes their expected flow payoff by
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taking expectations over (θ, ω) using their beliefs at period t. Since agents are myopic, there

will be instances in which the Bayesian will not learn even with infinite amounts of data.

This happens because myopic agents do not internalize the trade-off between flow payoff

and learning (exploitation vs exploration). This can result in too little experimentation

to learn their true type. An approach in which agents intentionally introduce variation in

their choices is given by Hestermann and Yaouanq [2021] and is discussed in the concluding

remarks. Regardless, this approach is useful as a benchmark for the other theories discussed

in this paper.

Notice that if a fully Bayesian agent has a dogmatic prior, they will never update their

beliefs about the parameter that they are dogmatic about. This will imply that they are

prone to the same types of errors as the dogmatic modeler in framework 1.

2.2.2 The Self-Serving Updater

A Self-Serving Bayesian is an agent who uses a biased version of Bayes rule to update his

beliefs. He will update his beliefs about the state ω and his type θ simultaneously by over-

attributing successes to a high value of θ and under-estimating the role of higher ω. Similarly,

he will attribute failure to a low state to a greater degree than an unbiased agent would. For

instance, if the student from the example attributed a high grade to being of high ability

while attributing low grades to a harsh grading system. This sort of biased updating is

referred to as misattribution bias.

To model the misattribution bias, I take the approach of Benjamin [2019], where the

posterior odds are given by:

pt+1(θ, ω|ht) = p[ht|θ, ω]c(θ,ω,ot)pt(θ, ω)∑
(θ′,ω′) p[ht|θ′, ω′]c(θ,ω,ot)pt(θ′, ω′)

with c(θ, ω, o) decreasing in θ and increasing in ω. ht is the history of signal realizations

observed up to period t.

This formulation allows the bias to be introduced by distorting the perceived likelihood
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that the signal was generated by either high values of θ when it is a success, or by low values

of ω when it is a failure. The parameter c determines the degree of bias and imposes enough

restrictions to ensure that the model is still falsifiable.

Define the distortion in the likelihood by ∆cp(ht|θ, ω) = p(ht|θ, ω)c(θ,ω,ot) − p(ht|θ, ω).

Notice that because p(ht|θ, ω) < 1, if c(·) < 1, a smaller exponent c implies a larger distortion

upward for a fixed ht, and fixed parameters θ and ω. While a c(·) > 1 implies a distortion

downward and it is larger when c(·) is larger.

3 A Unifying Example

In order to compare the predictions of the theories discussed above, I develop a unifying

example where the forces behind each of the theories can be isolated. The example is modified

from Heidhues et al. [2018] and is adapted to be implementable in the laboratory.

The agent can be of one of 3 types: θ ∈ {θL, θM , θH} with θH > θM > θL. They face an

unknown exogenous success rate ω ∈ {ωL, ωM , ωH} with ωH > ωM > ωL. Each of the values

of ω is realized with equal probability. The agent knows the distribution of ω but not its

realized value.

Denote the true type by θ∗ and the true state by ω∗. The agent holds some prior belief

about θ and chooses gamble e ∈ {eL, eM , eH}.16 The agent observes whether the gamble is a

success or a failure and receives a payoff of 1 if it is a success and 0 otherwise.

The probability of success is increasing in both θ and ω and is fully described in Table

1

ωH ωM ωL

eH 50 20 2
eM 45 30 7
eL 40 25 20

θL

ωH ωM ωL

eH 80 50 5
eM 69 65 30
eL 65 45 40

θM

ωH ωM ωL

eH 98 65 25
eM 80 69 35
eL 75 55 45

θH

Table 1: Probability of success for each type θ, gamble ω, and effort level e.
16Their belief about the type is potentially misspecified as in the dogmatic and switcher cases discussed

above.
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For each type, the agent’s flow payoff is maximized by choosing the gamble that matches

the state. For example, if the value of ω is ωH , the agent’s flow payoff is maximized by

choosing eH and if the state is ωL the flow payoff is maximized by choosing gamble eL,

regardless of the value of θ. The agent myopically chooses gambles every period to maximize

the flow payoff for T < ∞ periods.

After observing the outcome of each gamble, the agent updates their beliefs using some

procedure and moves on to the next period.

Notice that both θ and ω can be identified from the outcomes if enough variation in

the effort choices exists. This can be seen by confirming that there are no two pairs of θ

and ω that produce the same probability of success for all effort choices. Thus, by changing

the effort choice, the agent can learn both their type and the state if they observe enough

outcomes.

In this example, for an agent with a dogmatic belief about their type, a self-defeating

equilibrium is one in which the agent chooses an effort level that, under the true θ, yields

a frequency of success that is consistent with the agent’s misspecified belief. That is

P [sucess|θ∗, ω∗, e∗] = P [sucess|θ̂, ω̂, e∗] where e∗ is the agent’s myopic optimal choice.

In the data-generating process described above, there are five such equilibria. For ex-

ample, if the agent is of type θM but mistakenly believes that he is of type θ̂ = θH and that

ω∗ = ωM , when the effort chosen is eL, the agent will observe a success with 45% chance.

Because the agent dogmatically believes that their type is high, they will erroneously con-

clude that the rate is ωL. Under this belief, the optimal action is eL which will continue to

generate successes with a 45 probability, further reinforcing the incorrect belief. By doing so,

the agent forgoes the payoff from gamble eM that would yield a success with 65% chance.

By including self-defeating equilibria, the example captures the forces from each of

the updating mechanisms discussed in the previous section and allows for the comparison

of the main forces behind the theories. This is because the self-defeating equilibria in a

discretized setting captures the main forces from the dogmatic and Switcher models. In
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addition, the expected payoffs satisfy the properties that are needed to sustain dogmatic

beliefs in the long-run. For realizations of (θ, ω) for which there are self-confirming equilibria,

the dogmatic agent will fall into the trap whereas the switcher will be able to escape it.

However, because the domain has been discretized, the predictions are more limited than in

the original Framework 1.

On the other hand, having a binary as in Framework 2 allows for Bayes rule to remain

simple enough to track the objective beliefs that a fully bayesian agent would have. Moreover,

as in Framework 2, an agent with self-attribution bias will update their beliefs differently

from an unbiased Bayesian, leading them to choose different gambles. I exploit such cases in

order to test which model is a better fit for how subjects behave in a laboratory experiment.

In what follows I explain the details of how this example was implemented in the lab and the

predictions that each model makes for the behavior of each type of agent within the unifying

example.

4 Experimental Design

I recruited 86 undergraduate subjects from the CESS lab at NYU who participated in an in-

person experiment. Sessions lasted approximately 45 minutes and subjects earned an average

payment of $22. The experiment was programmed using oTree [Chen et al., 2016].

The experiment consisted of 2 treatments: the ego-relevant condition and the stereotype

condition. Subjects participated in only one of the treatments: a between-subject design.

All subjects within a session participated in the same treatment and the first 4 sessions were

assigned the ego-relevant condition; the rest were assigned to the stereotype treatment. The

tasks were identical across treatments. In the ego-relevant condition, θ is the subject’s own

performance in a quiz. In the stereotype condition, it is the performance of a randomly

selected subject from another session.

The experiment had three parts. In Part 1 subjects had two minutes to answer as many
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multiple-choice questions as they could from a 20-question quiz. They did this for quizzes on

six different topics. The topics were: Math, Verbal Reasoning, Pop-culture and Art, Science

and Technology, US Geography, and Sports and Video Games.17 In this part, they did not

know how many questions would answer and they were given no feedback.

After taking all six quizzes, they proceeded to part 2 where they were asked to guess

their score on each of them. In the stereotype treatment, they were additionally asked to

guess the score of a randomly drawn participant from a previous session. All they knew

about the other participant was their gender identity and whether they were US nationals or

not. For each guess, they had three score options: Low-Score (five or fewer correct answers),

Mid-Score (between six and 15 correct answers), High-Score (16 or more). Each of the score

categories corresponded to θL, θM , and θH respectively. They were also asked to say how

confident they felt about their choices. They had four possible answers: “it was a random

guess,” “there is another equally likely score,” “I am pretty sure,” “I am completely sure.”

I mapped these four answers to priors that place probabilities 0.33, 0.50, 0.75, and 1 to the

chosen type. The remaining probability is split equally among the other two types. Questions

in Part 2 were not incentivized, but subjects were told that providing an accurate answer

would increase their chances of earning more money in the last part of the experiment.

The purpose of Part 2 is to classify subjects into overconfident, underconfident and

correctly specified. If a subject guesses their score to be in a higher (lower) category than

their true score, they are overconfident (underconfident); if they guess their score to be in

the same category as their true score, they are correctly specified. This classification is done

for each of the six topics separately.

Finally, in Part 3, subjects completed a belief updating task for each of the quizzes.

Before starting the task they were reminded of the guess they made in part 2 about the score

from the corresponding topic of part 1. In the ego-relevant treatment, they were reminded

of their guess about themselves and in the stereotype treatment they were reminded of their

17This methodology is heavily based on Bordalo et al. [2019]
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guess about the other participant. In the stereotype treatment, they were also reminded of

the characteristics of the other participant.

For one topic at a time and in random order, they were presented with the three gambles

from the unifying example and were asked to choose one of them. The probability of success

was determined by their own score in the ego-relevant condition, and by the score of the other

participant in the stereotype condition. Subjects had access to the three probability tables

in the printout of the instructions at all times and the meaning of each cell was explained in

detail.

In the interface, they had to choose which of the 3 tables they wanted to see before

entering their choice in it. This was done as an alternative to a belief elicitation in each

round. I take their choice of table to be indicative of their beliefs about the underlying type.

I chose not to explicitly elicit the beliefs at each round to avoid experimenter demand effects

that would alter the behavior of subjects. The agent’s task in Framework 1 is to learn the

exogenous parameter and match it to their choice. By eliciting the beliefs about their type

in each round and rewarding them for it, I would create an additional incentive to learn their

type correctly. This can lead them to take actions that reveal their type when they wouldn’t

have done so in the case where there is no additional incentive.

Once subjects have entered their choice, they observe a sample of 10 outcomes from the

gamble they chose. After observing the outcomes, they returned to the choice screen and

entered a new choice. In the choice screen subjects had access to the entire history of gambles

and outcomes for that task as well as a summary of the outcomes so far. Once they entered

11 gambles (and observed 110 outcomes), they moved on to the next topic and repeated the

same procedure. They did this for all six topics.

At the end of the experiment, one of the six topics was randomly selected to determine

the payment. Subjects earned $0.20 for each correct answer in the quiz, and for each success

in the task in Part 3 for the selected topic.

Randomness is controlled throughout the experiment and sessions by setting a seed
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at the beginning of the first session. The seed was drawn at random and remained fixed

for all sessions.18 By doing this I ensure that any two subjects who have the same type

and face the same exogenous rate will observe the same outcomes. This feature allows me to

identify differences across subjects in updating procedures since if they use the same updating

procedure, they should be choosing the same gambles.

5 Predictions

In this section, I outline the behavior that is predicted by each of the theories discussed

above. Some of the predictions are made relative to the Bayesian benchmark. In particular,

the reaction to good and bad news is very informative of which model is most likely to be

underlying the behavior. Denote the sample size by I and define good news to be a sample of

signal realizations such that the number of successes in the sample is larger than the average

number of successes observed so far. i.e. if

I∑
i=1

I{oiT = success} ≥ 1
T

T∑
t=0

I∑
i=1

I{oit = success}

where T is the current period and ot = [oit]Ii=1 is the sample observed at period t. Denote

the set of good news at period t by Gt and let st be the number of successes in ot. Bad news

are any other kind of samples of signal realizations.

Given the definition of good and bad news, the reaction of the agent to each kind of

news is the change in their choice conditional on the signal realization. Therefore, what we

are interested in are the coefficients of the following regression model

∆a = β0 + β1I{ot ∈ Gt} + β2(st − st−1) + β3I{ot ∈ Gt}(st − st−1) + εt

where (st − st−1) is the size of the surprise and ∆a = at+1 − at is the change in action after

18The seed that was drawn at the beginning of session 1 was 3452. The same seed was used for all sessions.
It is used both for drawing ω for each of the tasks in the experiment, as well as for drawing the outcomes
from the gambles.
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observing the latest sample.19 β2 is the reaction of the agent to bad news with surprise

(st − st−1). And β2 + β3 is the reaction to good news with surprise (st − st−1). εt ∼ N(0, σ)

is variation in the action choices that is not explained by the sample of signal realizations.

5.1 Self-Attribution Bias

The key feature of Self-attribution bias is the asymmetric treatment of good news and bad

news. In particular, the agent will over-attribute successes to a high type and under-attribute

them to a low type. Similarly, they will over-attribute failures to a low state and under-

attribute them to a high state. This implies that, after observing a failure, the agent will

adjust their effort downwards by more than what an unbiased Bayesian would have done. In

contrast, after observing a success, the agent will adjust their effort upwards by less than a

Bayesian would have done and if the bias is large enough, it could be that the agent will not

adjust their effort upwards at all, or even decrease their effort in response to a success.

This is in stark contrast with what a Dogmatic modeler would do. A dogmatic modeler

always attributes any variation in the outcome to the state and never updates their beliefs

about θ. Therefore, they will always increase their effort choices after a surprising success

and decrease it after a failure.

On the other hand, the biased behavior can be in line with the behavior of a switcher.

In particular, if the agent starts with a misspecified belief on θ̂, and is willing to switch to

a belief with θ′ > θ̂, whenever the paradigm shift happens, it will likely be in response to

a surprising streak of successes. In this case, when they adjust their belief about θ, they

will also adjust their effort choice. Since they were initially underconfident, they had been

choosing an effort that was too high relative to the true state, and therefore, the effort is

likely to fall in response to a surprising streak of success.

Let βA be the coefficients of the regression model when the agent updates with misat-

tribution bias. Let βB be tha coefficients of the same regression model but when the agent
19The surprise is the difference between the number of successes in the sample observed at time t and the

average number of successes in previous samples.
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is Bayesian.

Prediction 1A: After observing a failure, the agent will adjust their effort downwards

by more than a Bayesian would have done. After observing a success, the agent will adjust

their effort upwards by less than a Bayesian would have done. If the bias is large enough, the

agent might not adjust their effort upwards at all, or even decrease their effort in response

to a success. That is βA
2 > βB

2 and βA
2 + βA

3 < βB
2 + βB

3

In addition to their behavior, there is an additional characteristic feature of misattribu-

tion bias that is not present in other models. This is the only model in which an agent could

start off with a correct belief and become more overconfident. In the long-run.

Prediction 2A: After observing a streak of successes, the agent will update their belief

about θ upwards even when they started with a correct initial belief.

5.2 Dogmatic Modeler

Since the domain of the problem is discrete and finite in the example, the predictions of the

original theory of Heidhues et al. [2018] apply only to the combinations of parameters and

initial beliefs for which there is a self-defeating equilibrium. In the unifying example, there

are 5 such combinations. For each of them, the dogmatic model predicts that the agent will

fall into the self-defeating equilibrium and will be able to sustain the dogmatic misspecified

belief forever.

Table 2 describes the 5 self-defeating equilibria and the effort choices that sustain them.

The first columns describe the combination of parameters and initial beliefs. The last column

describes the effort choice that the agent will make in the long run. It is only for these

combinations of parameter values and beliefs that the dogmatic model makes predictions

within the Unifying example. Otherwise, the agent is not able to sustain the dogmatic belief

and will be forced to use a different updating procedure to rationalize the signals that he

observed.

Prediction 1D: Whenever an agent is of a type θ∗ but mistakenly believes that they are
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of a type θ̂, and (θ∗, ω∗, θ̂) are such that there is a self-defeating equilibrium, the agent will

choose the effort level that sustains the misspecified belief forever.

In term of the dogmatic’s reaction to good and bad news, let βD denote the coefficients

of the regression model above when the actions are those predicted by the dogmatic model.

Prediction 2D: Before falling into a trap, the dogmatic modeler reacts more to good

and bad news than the Bayesian would. i.e. βD
2 > β2 and βD

3 > β3.

Prediction 3D: A dogmatic modeler never updates their belief about θ.

The model does not make predictions about what happens in cases where there is no

stable belief. I assume that because there is no stable belief, the agent will eventually have

to use some procedure to revise their belief about θ. In such cases, I aim to determine which

of the alternative explanations provided by the other theories is a better fit for the data.

True Type (θ∗) True State (ω∗) Believed Type (θ̂) Believed state (ω̂) Effort
θL ωH θM ωL eL

θM ωL θL ωM eM

θM ωM θH ωL eL

θM ωM θL ωH eH

θM ωH θH ωM eM

Table 2: Stable beliefs and the effort choices that support them for the unifying example

Although the dogmatic model does not apply to all possible parametrizations and beliefs,

whether subjects fall into the self-defeating equilibria or not is still informative of the updating

procedure that they are using. Understanding if the presence of traps is a key feature

preventing subjects from learning the optimal action is important for understanding the

prevalence of overconfidence. Similarly, gaining insight into what happens when there are no

traps is important for understanding the other reasons why overconfidence might arise and

prevail.
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5.3 Switcher

Since the switcher is at first like a dogmatic agent, their initial behavior is identical. However,

because the switcher keeps track of the likelihood ratio, they will be able to escape the

self-defeating equilibria if the evidence is convincing enough. Therefore there is positive

probability that the switcher will adjust their initially misspecified belief about θ and learn

the true state.

Prediction 1S: With positive probability, the switcher will escape the self-defeating

equilibria and learn the true state.

Let βS be the coefficients of the regresion model when the actions are those taken by a

switcher.

Prediction 2S: When there is no change of paradigm, the switcher behaves as the dog-

matic. When there is a change in paradigm, the reaction to good and bad news is attenuated

or even in the opposite direction of what a Bayesian would have done. that is βS
2 < βB

2 and

βS
2 + βS

3 < βB
2 + βB

3

One caveat is that when the switcher and the dogmatic agent both start with a correctly

specified belief, neither of them will fall into the self-defeating equilibria and thus will look

identical even in the long run. This means that in order to distinguish between the two

theories, I need to look at cases where the agent starts with a misspecified belief and the

switcher changes paradigm.

Prediction 3S: Correctly specified switchers do not update their beliefs about θ

The probability that the switcher will escape the self-defeating equilibria depends on

the prior belief about ω. If the prior is sufficiently tight around a self-defeating equilibrium,

the likelihood ratio will not grow fast enough. In the unifying example, the prior is uniform

over the states and therefore, the likelihood ratio is more likely to grow fast enough.
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6 Stereotypes

So far I have focused only on the case of overconfidence about an ego-relevant parameter.

However, each of the models can also be be applied to the case of stereotypes. An agent

can have a dogmatic belief about the ability of a particular group of people and either under

or overestimate the associated parameter. Similarly, they can be willing to switch between

two dogmatic beliefs about their ability as a switcher would. Finally, they can have a biased

updating procedure in which they treat good news and bad news asymmetrically.

All the predictions discussed above apply to the case of Stereotypes as well. My analysis

of stereotypes will focus only on the degree to which ego-relevance of the type affects the

updating procedure and not on the motivations behind the bias. I am particularly interested

in whether the explanatory power of the models differs with the degree of ego-relevance of

the type.

7 Results

7.1 Initial Beliefs and misspecifications

As mentioned in the predictions section, the dogmatic modeler and the switcher are only

distinguishable when the agent starts with a misspecified belief. Figure 1 shows the distribu-

tion of misspecifications by treatment. The histogram considers the difference between the

subject’s true score in the quiz and their guess about their score. If their guess is in a higher

category than their true score, they are overconfident; if it is in a lower category, they are

underconfident; and if it is in the same category, they are correctly specified. Overall, 43%

of the guesses made in the questionnaire were misspecified. The rest of the guesses coincided

with the true score.

Having widespread misspecifications is important for the analysis because it allows me

to distinguish between the dogmatic modeler and the switcher. If there were no misspecifi-
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Figure 1: Initial specifications by treatment

cations, the two models would be indistinguishable.

7.2 Learning

In this section, I analyze the learning behavior of subjects in the experiment. There are two

parameters that subjects can be learning about: the exogenous parameter ω and the type θ.

Their belief about the exogenous parameter is tracked by their choice of effort, while their

belief about the type is tracked by their choice of the matrix in which they enter their effort

choice.

7.2.1 Learning about the state

In order to analyze the learning about the state, I look at the share of optimal choices that

are made at each round. I find that although subjects seem to be improving in their choices

overall, the last choice coincided with the true state only in 52% of the choices in the last
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round of each task. This is statistically greater than the initial share of optimal choices

(p < 0.01). However, it is still far from complete learning. It is also important to note that

learning is similar across treatments. The share of choices that were consistent with the true

state for each round is reported in panel A of Figure 2.

A closer look at whether people learned or not reveals that there is an importan amount

of heterogeneity in the sample. Panel B of Figure 2 shows the share of optimal choices by

round for subjects that chose an effort that matched the state in 3 out of the last 4 rounds.

It also shows the share of optimal choices for subjects who chose an effort that matched the

state in fewer than 3 out of the last 4 rounds. I label the former as learners and the latter as

non-learners, with learners making up 38% of the sample.

Figure 2: Share of optimal choices by round for subjects who learned (their effort in at least
3 out of tha last 4 choices matched the state), and subjects who did not learn

In what follows I will aim to disentangle the reasons for the lack of learning about the

state by many subjects. According to the theories, the main reasons why subjects might not

learn is that either they have a dogmatic and misspecified initial belief about the type which

is supported by a self-confirming equilibrium; or they develop a misspecified belief due to an

incorrect updating procedure. I will argue that it is not due to the presence of self-confirming

equilibria (or learning traps), but rather due to biased updating.
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7.2.2 Learning about the type

Figure 3: Matrix choices by round

Since the elicitation of the belief about the type was not incentivized and not elicited in

a standard way, I start by confirming that subjects were not randomly choosing a matrix in

which to enter their effort. The left panel of Figure 3 shows the share of subjects who chose

a matrix consistent with their initial reported belief. In round 1, 69% of the subjects chose

a matrix that was consistent with their initial belief. This indicates that subjects were not

randomly choosing a matrix in which to enter their effort. From round 2 on, the share of

subjects choosing a matrix consistent with their initial belief declines, but not as far as to

indicate a random choice of matrices. This is consistent with the subjects moving away from

their original belief through some updating procedure.

The right panel of Figure 3 displays the share of subjects who chose a matrix that is

consistent with their true type. Unlike the left panel, there is no clear trend, which indicates

that although they are moving away from their initial belief, they are not moving towards

their true type, which means that overall, misspecification is not decreasing. A closer look

at the data reveals a good amount of heterogeneity in the underlying behavior.
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Figure 4 shows the transition matrix for subjects who started in each of the three

possible starting specifications and the specifications that they ended up in at the end of

the updating task. There are three things to note: first, the initial belief is the most likely

end belief. This is consistent with some degree of stickiness of the misspecifications as the

switcher and dogmatic models would predict. Second, the data presents a lot of subjects

who started with a correct belief of the type and ended up overestimating it. This is only

consistent with self-attribution bias. Third, subjects who initially overestimate the score, are

the least likely to learn their true type.

Figure 4: Transition matrix for subjects who started in each of the 3 possible starting speci-
fications and the specification that they ended up in at the end of the updating task

The transition matrix points towards the presence of self-attribution bias in the data.

However, it is still possible that there is heterogeneity in the updating procedure across

subjects. In the next section I will look at the role of self-defeating equilibria in preventing
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learning.

7.3 Learning traps

As described in Framework 1, the presence of stable misspecified beliefs act as learning traps

in this setting. If an agent falls into one of these traps, bayesian updating will lead them to

choose the same effort forever. These self-defeating equilibria allow me to distinguish between

the dogmatic modeler and the switcher. If the agent falls into a trap and stays there forever,

they are more likely to be a dogmatic modeler. If they escape the trap, they are more likely

to be a switcher or to be updating with some attribution bias.

Overall, it does not seem to be the presence of traps that is preventing learning. Panel

A of Figure 5 shows that the share of subjects who learned in cases where there was a trap

is larger than the share of subjects who learned in cases where there was no trap. This is

true for both treatments. This indicates that even in the presence of traps, 43% of subjects

learn. From the share that did not learn when there was a trap, 22% can be accounted for

as being trapped.20 While the rest of the subjects neither learned nor were trapped.

A closer look at the behavior of only the cases in which there were traps reveals that

among those who did not learn, the choices that support stable beliefs were chosen much

more often than among subjects who learned. Figure 5 shows the share of choices that

were consistent with a stable belief for the learners and the non-learners. The difference is

statistically significant (p < 0.01). Thus, although the presence of self-defeating equilibria is

not the main deterrent to learning, it does seem to be a factor in the behavior of those who

do not learn.

So far I have accounted for 17% subjects as being trapped, and 38% having learned

the state correctly. From the remaining 45%, 60% were prone to traps but did not fall into

them, therefore they could not have been dogmatic modelers. Alternative explanations are

that they were switchers who considered an incorrect alternative model, or that they were
20A subject is considered trapped when 3 out of their last 4 choices are consistent with a self-defeating

equilibrium.
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Figure 5: Panel A: Share of subjects who learned in cases where there was a trap and in
cases where there was no trap. Panel B: Share of choices that were consistent with a stable
belief for the learners, those who are in a trap and others

updating with a bias so large that their effort choices were far from optimal. Behavior that

is not consistent with either of these falls outside of the scope of the theories discussed here.

My results are consistent with the findings of Götte and Kozakiewicz [2022]. In a labo-

ratory experiment that stays true to Framework 1, they test the predictions of the dogmatic

modeler. They find that the average pattern in behavior is in the direction of the dogmatic

modeler, however, subjects do not fully act as dogmatics since their actions do not go as

far as to fully support the self-defeating equilibrium. A lot of the differences between the

observed behavior in their experiment and the model can be attributed to subjects avoiding

the self-defeating equilibria and learning the true state. In contrast to their study, I can

provide more insight into the reasons why subjects avoid the self-defeating equilibria.

7.4 Reactions to good and bad news

One of the key features of the self-attribution bias is that the agent will react differently to

good news and bad news. In particular, they will overreact to bad news and underreact to

good news. I define good news to be any sample of outcomes for which the realized number

of successes is greater than the average number of successes so far. Similarly, I define bad

news to be any sample of outcomes for which the realized number of successes is smaller than
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the average number of successes so far. In addition, I calculate the difference between the

realized number of successes and the average number of successes so far and call it the news

differential but can be thought of as the “size” of the surprise. Figure 6 shows the correlation

between change in effort and the news differential, separately for good and bad news.

The overall pattern is that bad news are associated with a decrease in effort, and a more

negative news differential is associated with a larger decrease in effort. On the contrary, good

news are associated with a small decrease in effort.21 As mentioned in the predictions section,

this is consistent with the self-attribution bias as well as with a change of paradigm. It is

not consistent with the dogmatic modeler or the Bayesian. In addition, the fact that about

a third of the subjects started with a correctly specified belief and ended up overconfident

is consistent only with the self-attribution bias. This points towards the fact that misattri-

bution bias is the most likely explanation for the aggregate behavior of the subjects in the

experiment.

A regression analysis of this same data reveals that indeed, the slopes are different

for good and bad news and that the difference is statistically significant.22 The regression

results are reported in Table 3. columns 2 and 3 of the table consider the model for each

treatment separately. I find no significant differences in the parameters across treatment.

This is consistent with the fact that the bias is not driven by the ego-relevance of θ.23

More convincing evidence against the Switching model is the lack of inverse or attenuated

correlation between the change in effort and the news differential. In particular, if the

switcher were the underlying model, I would expect overconfident subjects who start with an

21This asymmetric treatment of good and bad news has also been recently documented by Coutts [2019]
and @Barron2021

22I run a robustness check where I define good news to be a net-positive sample (half or more of the
outcomes observed in the sample received in that round were successful) and bad news to be net-negative
sample. I find the same pattern in this alternative regression model and the results are reported in the
appendix.

23The ego-relevance of θ is the motivation behind the self-attribution bias, however, the bias itself is
due to an incorrect updating procedure in response to good and bad news. The presence of asymmetric
updating in the stereotype condition can be due to self-censoring of the subjects. In particular, subjects who
initially underestimated the performance of the other participant might have realized their mistake and by
overestimating it after good news. This is consistent with the data presented here as well as with the data
observed in the transition matrix for stereotypes which is reported in the Appendix
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Figure 6: Change in effort by news differential
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overestimation of θ to increase their effort in response to surprising bad news. This would

flatten the slope of the regression line for bad news relative to what a Bayesian would do.

Table 3 shows that the slope for bad news for the simulation of the Bayesian updates is much

flatter than the slope in the data.24

7.5 Stereotypes and the role of ego-relevance

Although the overall distribution is similar for both treatments, the misspecifications arise

for different combinations of characteristics in each treatment. Figure 7 shows a heatmap

of the specifications that arose in each treatment. In the stereotype treatment, subjects are

most underconfident about the performance of other non-American females in Sports and

Video Games. In contrast, they are most overconfident about the performance of American

men in Verbal Reasoning. In the ego-relevant treatment, subjects are most underconfident

about their own performance in pop culture and art, while most overconfident about their

performance in Verbal Reasoning.

Figure 7: Initial misspecifications by treatment and characteristics. a -1 corresponds to all
subjects being underconfident while 1 corresponds to all subjects being overconfidence. All
subjects being correctly specified is assigned a value of zero.

Throughout the experiment, there is little difference in the behavior of subjects across
24The details on how the data was simulated are explained in the Appendix
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treatments. Two of the main differences are, first that subjects in the ego-relevant treatment

are more likely to become overconfident when they start with a correct belief; and second,

that subjects in the stereotype treatment are more likely to overreact to good news when

they start by underestimating the performance of the other participant.

These two differences are consistent with the self-attribution bias, however, the pattern

in the stereotype treatment could also be due to self-censoring of the part of subjects. In

particular, subjects who initially underestimated the performance of the other participant

might have realized their mistake and over-compensated their mistake by overestimating it

after good news. This is consistent with the data and offers a more intuitive explanation for

why this pattern arises in the stereotype treatment. It is also consistent with the findings

of Bohren et al. [2019], where they find that subjects initially underestimate the ability of

women, however, after a sequence of good news for a woman, the attitude reverts and subjects

evaluate that particlar woman to be better than men.

Furthermore, I find no evidence of confirmation bias which is something that has been

suggested in the literature of biased updating.25 In particular, I find no evidence that subjects

who overestimate the score of the other participant are more likely to over-attribute successes

to a high type and under-attribute them to a low type. Symmetrically, I find no evidence

that subjects who underestimate the score of the other participant are more likely to over-

attribute failures to a low type and under-attribute them to a high type. This is consistent

with what Möbius et al. [2022] find in their experiment in a less complex updating task.

8 Structural estimation

I have discussed two models that broadly are consistent with many aspects of the data: the

self-attribution bias and the switcher. Although the data seems to point more convincingly

towards the self-attribution bias, I cannot rule out the possibility that the switcher is the

underlying model. In this section, I estimate the structural parameters of the two models and
25See Benjamin [2019] for a review of the existing research on this bias.
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try to classify subjects into each of the models to assess how much of the data is explained

by each of the two likely theories.

8.1 Estimation of the switching threshold

The switching threshold is the parameter that determines the likelihood ratio at which the

switcher abandons the status quo paradigm and adopts the alternative. In order to estimate

this parameter, I assume that all subjects are switchers and look at the rounds in which

they chose to reveal a probability matrix that was different from the one they revealed in

the previous round. I then calculate the likelihood ratio for the alternative paradigm to the

status quo. I average across all such likelihood ratios and use the average as an estimate of

the switching threshold.

In detail, Let bθ
t be the belief about θ in period t.26. And consider a subject for whom

bθ
τ−1 ̸= bθ

τ , where bθ
t . That is, in period τ − 1 they chose to reveal a matrix that was different

from the one they revealed in period τ . The matrix revealed in period τ − 1 is the status quo

paradigm and the matrix revealed in period τ is the alternative paradigm. The likelihood

ratio for the alternative paradigm to the status quo is

ℓ = L(θ|bθ
τ )

L(θ|bθ
τ−1)

= pτ (ot|bθ
τ )

pτ (ot|bθ
τ−1)

,

where pτ (ot|bθ
τ ) is the probability of observing the signal ot when the agent is of type bθ

τ .

The estimate of the switching threshold, α, is the average of the likelihood ratios across

all subjects who switched in the experiment, which is given by

α̂ = 1
N

N∑
i=1

ℓiτ ,

where N is the number of switches observed in the experiment.

Because the feedback that subjects receive is the equivalent of 10 signal realizations, the
26in the experimental data, I use the revealed matrix as a proxy for the belief. I take the matrix revealed

in the previous period to be the status-quo and the matrix revealed in period t to be the alternative
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estimate of the parameter is an upper bound of the true parameter. A lower bound would

be given by the average likelihood ratio in the round before the switch happens. I choose to

estimate the upper bound to impose a harsher test on the theory.

Because the likelihood ratio is a function of the signal, it depends on the sequence of

signals that subjects observe. This means that in some cases, the likelihood ratio increases

by a large amount from one period to another. Although such cases are not common27, a few

very large values can skew the average. To avoid a biased parameter, I restrict my sample to

those observations for which the likelihood ratio is less than 5.28 Under these assumptions,

the estimate of the switching threshold is 1.09.

This means that the evidence supporting the alternative paradigm needs to be approxi-

mately 10% more compelling than the evidence supporting the status quo paradigm in order

for the agent to switch. The estimation treatment by treatment is slightly larger for the

Ego condition than for the Stereotype condition. However, the difference is not statistically

significant (p-value=0.96).

I then use this estimate to simulate the behavior of the switcher to assess the fit of the

model. Which is discussed in the next section.

8.2 Estimation of the self-attribution bias

I use the simulated method of moments to estimate the distortion parameters of the

misattribution bias model. There is a toltal of 6 parameters in the model, however, I

assume that the distortion is symmetric for good and bad news. Formally, I assume that

c(θH , ω, good news) = c(θ, ωL, bad news), c(θM , ω, good news) = c(θ, ωM , bad news) and

c(θL, ω, good news) = c(θ, ωH , bad news).

To estimate them I use 4 moment conditions. The moments that I use are the regression

coefficients from the reaction to good and bad news. That is: the slope and intercept of the

relationship between the number of successes in the last signal sample and the change in
27In the data, only 1.8observations have a likelihood ratio that exceeds 5.
28The full distribution of likelihood ratios is reported in the appendix
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effort as a consequence. The slope and intercept are different for good and bad news, which

gives 4 moment conditions. To determine good news are samples for which there are more

successes than failures. Bad news are outcome samples for which there are more failures than

successes. The sample moments are reported in 4 and correspond to the following regression

model:

∆effortit = β0 + β1signalit−1 + β2I{good newsit−1} + β3I{good news} ∗ signalit−1,

where i is an individual and task level index (each subject in each of the six tasks in the

experiment represents a single observed path) and t is a round_number index that ranges

from 1 to 11. The variable signalit−1 is the number of successes observed in round t − 1, and

the change in effort is ∆effortit = effortit − effortit−1. The coefficients β0 and β1 are the

moments that rule the interaction between bad news and effort change, while β0 + β2 and

β1 + β3 are the intercept and the slope for the relation between effort change and good news.

In order to find the parameters that correspond to the observed moments I rely on

simulation. Rather than theoretically deriving the moments, I simulate what a large number

of subjects would have done conditional on parameter values. I do this for a large number

of parameter combinations that statisfy the restrictions on them. For each set of parameter

values, I compute the simulated moments. These simulations are meant to approximate the

population moments conditional on parameters. I then look for the set of parameters that

minimize the weighted quadratic distance between the sample moments and the population

moments. The weight I place on each of the moments is the inverse of the variance of the

moment in the sample.

The model makes deterministic predictions about the choices subjects should make after

each possible history of signals. However, in the data I observe significant variation. In order

to account for variation in the simulation I introduce a noise parameter εit ∼ U [0, 1] which

introduces a tremble in the choice of subject i in period t. If εit < 0.1 the subject chooses

an effort level at random. Otherwise they choose the optimal effort as predicted by the
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model. More details on the simulation can be found in the Appendix. While the estimated

parameters are all interior solutions with ĉ = (0.4, 0.7, 1.5).

Using the estimated parameters I proceed to simulate the deterministic choice paths for

each of the models.

9 Model fit

I simulate each of the models for each possible combination of type and state (θ, ω). I

then compute te distance from the observed paths of each subject to each of the simulated

paths that match the subjects type and state. I average across all paths for a single subject

(each subject participated in 6 distinct effort tasks) and determine which model is a better

explanation for that subject’s behavior by finding the one that gives the minimal average

distance between the observed behavior and the simulation.

In detail, let eikt be the effort chosen by subject i in task k at round t. And let ẽt(θ, ω, j)

be the simulated choices using model j for a subject of type θ in state ω. And let j be

dogmatic, switcher, attribution or Bayesian. I solve the following problem to determine the

best fitting model for each subject i.

arg min
j

∑
k

1
T

∑
t

[eikt − ẽt(θ, ω, j)]2

The histogram in Figure 8 shows the distribution of the best fitting models in the sample.

The average fit of each model is reported in the Appendix.29

9.1 Discussion

The data shows that the aggregate behavior is consistent with an asymmetric treatment

of good and bad news. From the theories that I considered here, such behavior is only

predicted by a model in which subjects introduce a bias in their updating procedure so that
29The best fitting models are robust to different distance functions. In particular, the share of subjects

best explained by misattribution bias is the same when using norm 1.
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Figure 8: Distribution of the best fitting models at a subject level in each treatment
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good news are attributed to the type and bad news are attributed to the state. A biased

updating procedure like this one serves the agent by allowing them to hold an overconfident

belief. The dynamic in the matrix choices, which is indicative of their belief about their type,

reveals that in fact subjects are more likely to become overconfident than learn the truth.

On the other hand, when we consider the stereotype treatment, the behavior is similar,

but the revealed belief changes are different. In this case the asymmetry can be coming

from an over-compesation to correct initial negative biases about others. This reaction is

not present when the initial bias overestimates the other participan’t ability. This induces

an asymmetry in the aggregate data and looks like attribution bias. When Analyzing the

fit of the models, this same asymmetry causes the attribution bias model to be the best

fit for most subjects even in the stereotype treatment. However, alternative theories that

introduce an asymmetric reaction to information depending on the initial bias could be

a better exaplanation for this case. For instance, a model similar to the paradigm changes

where the switching threshold α takes different values for people who initially have a negative

or positive bias would also be consistent with the observed data and would provide a more

intuitive explanation for why this pattern arises.

10 Conclusion

Belief updating has been shown to be a difficult task in which multiple biases and where lack

of learning arises. I focus on a setting where learning about a state is complicated by the

presence of an additional parameter—the type—and by endogenous information. I designed

a setting in which I can distinguish between the forces of dogmatism, paradigm shifts, and

optimal expectations. Through a laboratory experiment, I collected data on behavior and

infer beliefs from it. I find that the behavior of the subjects is consistent with the self-

attribution bias. In particular, I find that subjects decrease their effort in response to bad

news as well as to bad news, although the latter decrease is smaller. This is consistent
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with the self-attribution bias as well as with a change of paradigm. However, I also observe

that about a third of the subjects started with a correctly specified belief and ended up

overconfident. This is consistent only with the self-attribution bias. Therefore, I conclude

that the model that best explains the data is that of optimal expectations.

I have small or no effects throughout on the ego-relevance of the type. Although the

motivation behind the theories does not directly apply to the case of stereotypes, the lack

of stark differences suggests that biases arise due to an incorrect updating procedure and

not necessarily due to the self-serving motivation behind the bias. The lack of differences

in the behavior of the subjects across treatments could also be due to self-censoring of the

subjects. In particular, subjects might be initially reluctant to express their true belief about

a particular group of people. In addition, as they learn and realize that their beliefs might

be incorrect, they might overreact to signals to try to compensate for the initial bias. Such

an updating procedure would be consistent with the self-attribution bias for the case of

stereotypes. I remain agnostic about whether that is truly the case or whether the lack of

differences is due to other factors.

A different bias that has been studied and suggested in the literature is the confirmation

bias. In particular, it has been suggested that subjects who overestimate θ in their prior, will

over-attribute successes to a high type and under-attribute them to a low type. Symmet-

rically, subjects who initially underestimate θ will over-attribute failures to a low type and

under-attribute them to a high type. I do not find evidence of such a bias in the data. This

is consistent with what Möbius et al. [2022] find in their experiment.

I further investigate possible heterogeneity in the underlying models being used by

estimating the structural parameters of the models. I find that under the average parameters,

most subjects are best explained by misattribution bias in both treatments. However, for

the subjects for whom other models are a better explanation, those models have a better fit

than the misattribution bias does for those better explained by it.

Overall, the classical behavioral theory of self-serving attribution bias is consistent with
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the observed behavior. However, the intuition it offers is more appealing in the ego-relevant

case than for stereotypes. For a setting where people do not learn about themselves but

about someone else, a modified version that takes into account the asymmetry between good

and bad news could be an appealing alternative explanation.
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A appendix

A.1 Transition matrix by treatment

Figure 9 shows the transition matrix for each of the treatments separately. It shows that

initial misspecifications are more sticky in the ego treatment and that subjects who underes-

timate the score of the other participant in the stereotype treatment are more likely to end

up overestimating it than in the ego treatment. This may signal some sort of self-censoring

or overreaction in the stereotype treatment.

Figure 9: Transition matrix for subjects who started in each of the 3 possible starting speci-
fications and the specification that they ended up in at the end of the updating task

A.2 Full distribution of likelihood ratios

The likelihood ratios at rounds in which I observe a change in the belief about θ presents a

long right-tail. In particular, 1.8% of the observations have a likelihood ratio that exceeds 5

which would mean that the agent requires evidence that is 5 times more compelling in favor
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of the alternative paradigm in order to switch. Figure 10 shows the distribution of likelihood

ratios for all observations.

Figure 10: Distribution of likelihood ratios for all observed belief changes

A.3 Simulated Method of Moments

I simulate the model on a grid with 3 parameters: c1, c2 and c3 such that c1 < c2 < c3.

All parameters on the grid take values between 0.1 and 2 with a distance of 0.1 between

them. I simulate 1000 paths of choices of length 11 for each of the possible combinations of

parameters. For each set of parameters I compute the moments by estimating the regression

model described in section 8.2. Represent the simulated models for parameter vector c by

m̃(c) and the sample moments by m. The estimates of the parameters are given by

ĉ = arg min
c

(m̃(c) − m)T W (m̃(c) − m)
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It is also worth noting that since the randomness if fixed in the experimental data by set-

ting a seed, I do the same in the simulation and use the same seed as in the experimental

environment to account for the correlation in observed signals that exists in the sample.

To determine the parameters θ and ω in the simulated individuals, I draw from the

empirical distribution.

A.4 Model simulation

In order to simulate the data for each of the models and asses their fit, I simulated the path

that each type of agent would have taken given each possible realization of (θ, ω). I fixed the

seed of the random number generator to 345230 and fixed the signals that would be shown

in each round after each choice by drawing them before simulating. This way, the signals

that the simulation uses coincide exactly with the signals that a subject would have seen

in the experiment. I then use each of the algorithms defined by the models to simulate the

path that the agent would have taken given the signal and given an initial belief. For the

dogmatic modeler and the switcher, I use each possible dogmatic belief. For the Bayesian

and the self-attribution bias, I use a uniform belief on theta.

A.5 Model fit

The average model fit for each of the simulated models is reported in Figure 11.

A.6 Reaction to good and bad news (robustness check)

I use an alternate definition for good and bad news and check whether the results are robust

to this. I define a signal to be a net positive if the number of successes is equal to or greater

than the number of failures. I define a signal to be a net negative if the number of failures is

greater than the number of successes. I now treat net positive signals as good news and net

negative signals as bad news. I then rerun the regression analysis and find that the results
30this is the seed that was drawn at random for the experiment
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Figure 11: Average distance of subject behavior to the best fitting model

47



are robust to this alternative definition. In particular, net negative signals are associated

with a stark decrease in effort for both treatments. Net positive signals are associated with

a small decrease in effort for both treatments. The results are reported in Table 4.

Table 4: Regression of effort change on news difference with robust standard errors

Dependent variable:
Change in effort

All Ego-relevant Stereotype
(1) (2) (3)

Net-positive signal 1.01∗∗∗ 0.80∗∗∗ 1.22∗∗∗

(0.05) (0.05) (0.05)

Signal value 0.21∗∗∗ 0.22∗∗∗ 0.20∗∗∗

(0.02) (0.02) (0.02)

Signal value * Net-Positive signal −0.28∗∗∗ −0.26∗∗∗ −0.31∗∗∗

(0.02) (0.02) (0.02)

Constant −0.48∗∗∗ −0.48∗∗∗ −0.49∗∗∗

(0.04) (0.04) (0.04)

Observations 5,160 2,700 2,460
R2 0.05 0.05 0.05
Adjusted R2 0.05 0.04 0.05

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B Experimental Instructions

You are about to participate in an experiment on decision-making. What you earn depends

partly on your decisions and partly on chance. Please turn off cell phones and similar devices

now. Please do not talk or in any way try to communicate with other participants. We will

start with a brief instruction period. If you have any questions during this period, raise your

hand, and your question will be answered so everyone can hear.

General Instructions
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The experiment is separated into two parts. You will be given instructions for each part

when it is reached.

Part 1:

In part 1, you will be asked to solve a series of quizzes. In each quiz, you will answer

multiple choice questions on one of 6 topics: Math, Verbal Reasoning, US Geography, Science

and Technology, Pop Culture, and Sports and Video Games.

The order of the topics will be determined randomly.

You will see only one question at a time. Select an answer and then click the “Next”

button to move on to the following question.

If you leave a question unanswered, it will be marked as incorrect. You will not be able

to go back to that question once you click the “Next” button.

You will have 2 minutes for each quiz. Once the time runs out, your answers will be

submitted automatically.

At the end of the experiment, the computer will randomly select one topic (each chosen

with equal probability), and you will be paid $0.20 for each correct answer.

Your score on the quizzes will also affect how much you earn in part 2. The higher your

score, the more likely you will be to make more money.

When you finish all six quizzes, there will be a short questionnaire that will not affect

your payoff. Please answer all the questions as accurately as you can. You will have access

to your answers from Part 1 when in Part 2, which can help you make better choices.

We will move on to Part 2 once everyone completes Part 1.

Part 2 (Ego):

The task in this part will be repeated once for each topic from Part 1. For each task,

you will make 11 choices.

In this part, you will choose one of 3 gambles and see 10 outcomes for the one you

choose. Each outcome will be either a success or a failure, and the probability with which

each of them is a success is determined by 3 factors:
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Your score on the quiz for the corresponding topic,

A randomly chosen success rate,

Your choice of a gamble.

Your score is either Low (if it is 5 or less), Mid (if it is between 6 and 15), or High (if it

is 16 or more). You will not know your actual score, but you will be reminded of the guess

you made in part 1.

The success rate will be chosen randomly by the computer, and it can be Rate A, B, or

C. Each is drawn with an equal chance (1⁄3 chance each), but you will not know which one

was drawn. The rate is drawn once, at the beginning of the task, and stays fixed throughout.

To maximize the chance of success, you should choose the gamble that matches the

underlying success rate: - Gamble A maximizes the probability of a success when the rate

is A, - Gamble B maximizes the probability of success when the rate is B and - Gamble C

maximizes the probability of success when the rate is C.

After 11 gamble choices, the task will change to the next topic. This means that the

probability of success for this new task will be determined by the following: - The score you

received on the quiz for the corresponding topic and - a new draw of the rate (A, B, or C)

At the end of the experiment, the computer will randomly pick one of the topics, and

you will be paid $0.20 for each success. (For each topic, there will be 110 outcomes: 10

outcomes for each of the 11 choices you made).

We will now go over the details of the probability of success. They are described by the

tables in the back.

Three tables describe the probabilities. Each table corresponds to one of the score levels:

Low, Mid, and High.

Each of the columns within the matrix corresponds to one of the success rates. You do

not know which was drawn, but the gambles’ outcomes can help you determine the rate.

You will choose a Row.

In order to enter your choice of a gamble, you will first need to choose which matrix you
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want to see. If you choose a matrix that does not correspond to your score, the probabilities

in the table will not match the probabilities with which the outcomes are successful.

The outcomes will be generated using: - your actual score (table), which you do not

know for certain, - the gamble (row) that you chose, and - the rate (column), which you also

don’t know.

Part 2 (stereotype):

The task in this part will be repeated once for each topic from Part 1. For each task,

you will make 11 choices.

In this part, you will choose one of 3 gambles and see 10 outcomes for the one you

choose. Each outcome will be either a success or a failure, and the probability with which

each of them is a success is determined by 3 factors: - The score of another participant on

the quiz for the corresponding topic, - A randomly chosen success rate, - Your choice of a

gamble.

The other participant’s score is either Low (if it is 5 or less), Mid (if it is between 6 and

15), or High (if it is 16 or more). You will not know the score but will be reminded of your

guess in part 1.

The success rate will be chosen randomly by the computer, and it can be Rate A, B, or

C. Each is drawn with an equal chance (1⁄3 chance each), but you will not know which one

was drawn. The rate is drawn once, at the beginning of the task, and stays fixed throughout.

To maximize the chance of success, you should choose the gamble that matches the

underlying success rate: - Gamble A maximizes the probability of a success when the rate

is A, - Gamble B maximizes the probability of success when the rate is B and - Gamble C

maximizes the probability of success when the rate is C.

After 11 gamble choices, the task will change to the next topic. This means that the

probability of success for this new task will be determined by the following: - The score the

other participant got on the quiz for the corresponding topic - A new draw of the rate(A, B,

or C)
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At the end of the experiment, the computer will randomly pick one of the topics, and

you will be paid $0.20 for each success. (For each topic, there will be 110 outcomes: 10

outcomes for each of the 11 choices you made).

We will now go over the details of the probability of success. They are described by the

tables in the back.

Three tables describe the probabilities. Each table corresponds to one of the score levels:

Low, Mid, and High.

Each of the columns within the matrix corresponds to one of the success rates. You do

not know which one was drawn, but the gambles’ outcomes can help you determine the rate.

You will choose a Row.

In order to enter your choice of a gamble, you will first need to choose which matrix you

want to see. If you choose a matrix that does not correspond to the score, the probabilities

in the table will not match the probabilities with which the outcomes are successful.

Once you enter a choice, the 10 outcomes will be generated using the following: - the

actual score (matrix), which you do not know for certain, - the gamble (row) that you chose,

and - the rate (column), which you also don’t know.

The full data generating process is printed on the rear side of the instructions and always

available to the subjects throughout part 2. Each of the matrices is labeled with “if your/the

other participant’s score is. . . ” depending on the treatment

Screen walk-through script:

This is the screen where you will enter your choices of gambles. First, you must choose

the matrix that you want to see. Whatever matrix you choose to see does not change the

probabilities with which the gables are a success. Then, you must choose a gamble (which

corresponds to a row). The computer will draw 10 outcomes for that gamble using the

probability in the chosen row and the column corresponding to the rate for this task. On the

right, you can choose to see either the total count of successes and failures for each gamble

or the detailed history. That is the number of successes and failures for each of your choices.
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The rate will be drawn again for the next task, corresponding to the next quiz topic. And

you will repeat this process.
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